Sailmaker's guide Everything a sailmaker needs to know about Seldén masts, booms and furling systems. ## 1 Introduction This guide is intended to provide sailmakers with the information necessary for them to ensure that rig and sail will be compatible. It covers the major part of Seldén's production from 1977 onwards. The information generally applies to Kemp products of the same period. Masts between 1977 and 2002 are normally type D or E (conventional masts) or type R (furling mast). Masts from 2003 are type C (conventional masts) or type F (furling masts). With the introduction of new C- and F masts from 2017, these masts are now denoted C (2003), C (2017), F (2003), F (2017). Each section of the guide is marked with mast type to help the reader in locating the correct information. Although this Guide is primarily aimed at Sailmakers, the content should assist our end customers in making the best use of our impoved product. However, we would point out that this guide is only intended as an aid, and that variations can occur. It is the sailmaker's responsibility to ensure that the sail suits the rig. This information will be up-dated as new products are introduced. Seldén reserves the right to change the specifications given without prior notice. | | | The following information must be given to the sailmaker by the customer: | | |-----------|---|---|--| | | Conventional mainsail with "short" battens. | Mast section dimensions. • Boom section
dimensions. • Sail Plan ("P" & "E"). | | | Mainsails | Conventional mainsail with full length battens. | Mast section dimensions. • Boom section
dimensions. • Sail Plan ("P" & "E"). | | | | Furling mast mainsails | Mast section dimensions. • Boom section
dimensions. • Reefing system type (Seldén furling,
Furlex-Main, etc.) | | | Foresails | Roller furling genoas. | Furlex type. • Total forestay length incl. all toggles or available sail space • Sail Plan | | ## **Contents** | | Pc | age | | F | Dage | |-------|---|-----|------|---|------| | 1 | Introduction | 2 | 5 | Booms and reef systems | 30 | | 2 | Conventional masts | 4 | 5.1 | Boom sections on conventional masts | 31 | | 2.1 | Mast sections | 4 | | (through 1991) | | | 2.2 | Mast deflection curves | 5 | 5.2 | Traditional slab-reefing booms | 32 | | 2.3 | Head measurements, Yacht masts | 6 | | from 1991 inclusive 2003 | | | 2.4 | Head measurements, Keelboat | 7 | 5.3 | Traditional slab-reefing booms on C-mast from 2003 - 2007 | 33 | | 3 | Mainsails | 8 | 5.4 | Traditional slab-reefing booms | 34 | | 3.1 | Fitting slides | 8 | | on C-mast from 2008 | | | 3.2 | Sail slides E-masts | 8 | 5.5 | Single line reef booms from 1991 - 2003 | 35 | | 3.3 | Sail slides C-masts | 9 | 5.6 | Single line reef booms on C-mast | 36 | | 3.4 | Shackles for sliders | 9 | | from 2003 - 2007 | | | 3.5 | OWS slider for webbing | 10 | 5.7 | Single line reef booms on C-mast | 37 | | 3.5.1 | OWS slider - dimension | 11 | | from 2008 | | | 3.5.2 | OWS slider - range | 12 | 5.8 | Slab reef Match booms | 38 | | 3.6 | MDS Full batten system for C-masts | 14 | 5.9 | Single line reef Match booms | 39 | | 3.6.1 | MDS 45 and 68 Full batten system | 14 | 5.10 | Clews | 40 | | 3.6.2 | Parts and RM-limits, MDS 45 and 68 | 15 | 5.11 | Running reef-hooks | 41 | | 3.6.3 | IWS Full batten system for C-masts | 16 | 5.12 | Boom sliders - eye | 42 | | 3.6.4 | Parts and RM-limits, IWS 45, C137, C153, C180 | 17 | | | | | 3.6.5 | IWS Full batten system for C-masts, C192, C225, | 18 | 6 | Furling mast | 43 | | | C242, C261, C280 (2017-) | | 6.1 | R section: manual, hydraulic and electro | 43 | | 3.6.6 | Parts and RM-limits, IWS 45, IWS 68 Masts | 19 | 6.2 | F section: manual, hydraulic and electro | 45 | | | C192, C225, C242, C261, C280 | | 6.3 | Furlex Main - Retro-fit system | 49 | | 3.6.7 | MDS 80 Full batten system | 20 | 6.4 | Design aspects of furling mast | 51 | | 3.6.8 | Parts and RM-limits, MDS 80 | 21 | | main sails | | | 3.7 | Seldén – RCB full batten System 22 | 22 | 7 | Furlex - Seldén jib furling and | 52 | | | and System 30 | | | reefing system | | | 3.7.1 | Dimensions | 22 | 7.1 | Furlex 20S-40S | 52 | | 3.7.2 | Parts | 23 | 7.2 | Furlex 50S-500S | 53 | | 3.7.3 | Try Sail slider | 23 | 7.3 | Furlex 104S-404S | 54 | | 3.8 | Sail feeder gates | 24 | 7.4 | Furlex 200TD-400TD (Trough Deck) | 55 | | 3.8.1 | Seldén E-section Sail feeder gate | 24 | 7.5 | Furlex 204TD-404TD (Trough Deck) | 56 | | 3.8.2 | Seldén MDS sail feeder gate - Yacht mast 23 | 25 | 7.6 | Furlex Hydraulic 300H-500H | 57 | | 3.8.3 | Seldén IWS Sail feeder gate - Yacht masts | 26 | 8 | Furling system CX & GX | 58 | | 3.8.4 | Seldén feeder gate - Keelboat | 27 | 8.1 | Seldén CX | 58 | | | | | 8.2 | Seldén GX | 59 | | 4 | Batten Receptacles | 28 | | | | | 4.1 | Batten receptacle fitting | 29 | | | | | 4.2 | Batten recentacle range | 29 | | | | # D&E ## 2 Conventional masts ### C #### 2.1 Mast sections Mast section measurements are given as follows: Section Length/Section Width (i.e. 170/115). Take note of the mast section shape. This will help identification and the use of correct measurements. The Section Length of the mast can usually be found in the number engraved at the mast heel. For example K23-170-1233. | Conve | ntional ma | sts before 20 | 03 | | |----------------------------------|---|-------------------------|--------------------------|------------------| | | Mast | Luff
Groove
mm | Slider | | | E-Section
(10° aft face) | 122/85
130/93 | 4.0 + 1.0
- 0.0 | 511-601 | C-Section (2006) | | | 138/95
155/104
✓170/115
177/124
189/132
206/139
224/150
237/162
274/185 | 5.5 ± 0.75 | 511-602
or
511-603 | C-Section (2006) | | | 321/171
365/194 | 6.25 ± 0.75 | 511-603 | | | E-Section
(Round aft
face) | 126/85 | 4.0
+ 1.0
- 0.0 | 511-601 | C-Section (2003) | | | 147/95
162/104
178/115
216/139
239/162 | 5.5 ± 0.75 | 511-602
or
511-603 | | | D-Section | 109/88
121/92 | 4.0 + 1.0
- 0.0 | 511-601 | | | | 129/100
137/113
146/112
160/132 | 5.5 ± 0.75 | 511-602
or
511-603 | C section (2017) | | P-Section | 73/53
90/65
100/73
111/81
123/90 | + 0.75
4.0
- 0.00 | 611-601 | | | | 137/100 | + 0.75
4.5
- 0.00 | 511-601 | | | | 152/111
169/123
188/137 | 5.5 ± 0.75 | 511-601
or
511-603 | | | | | Conv | ventional ma | sts from 2 | 003 | | | | | |---------------------|--|--|----------------------|--|--------------------------|--------------------------|----------------------|--|--| | | Mast | Mast
dim | Luff
groove
mm | Groove
insert
for bolt
rope ¹⁾ | MDS-
car | Sail
slider | Bolt
rope
(mm) | | | | C-Section
(2006) | | | | | | | | | | | | C080
C086
C096 | 79/60
87/64
96/69 | 4.5 ± 0.75 | - | - | 511-601 | Ø 10 | | | | C-Section (2006) | C106
C116
C126
C139 | 106/71
116/75
126/79
139/85 | 5.0 ± 0.75 | - | - | 511-602 | Ø 10 | | | | C-Section
(2003) | C156
C175
C193 | 156/87
175/93
193/102 | 10 ± 0.75 | 5.5 ± 0.75 | 511-702 | 511-605
or
511-607 | Ø 10 | | | | | C211
C227
C245
C264
C285
C304 | 211/110
227/119
245/127
264/136
285/147
304/157 | 10 ± 0.75 | 5.5 ± 0.75 | 511-701
or
511-702 | 511-605
or
511-607 | Ø 10 | | | | | C321
C365 | 321/171
365/194 | 16 ± 0.75 | - | 511-730
or
511-731 | 1 | - | | | | C section
(2017) | Mast | Mast
dim | Luff
groove
mm | Groove
insert
for bolt
rope ¹⁾ | Inner
wheel
slider | Sail
slider | Bolt
rope
(mm) | | | | | C137 | 137/98 | 10.5 +-0.7 | 4.7 +-0.5 | 511-729 | 511-605 | ø8-ø10 | | | | | C153 | 153/107 | 10.5 +-0.7 | 4.7 +-0.5 | | or | ø8-ø10 | | | | | C180 | 180/113 | 10.5 +-0.7 | 4.7 +-0.5 | | 511-607 | ø8-ø10 | | | | | C192 | 192/120 | 10.5 +-0.7 | 4.7 +-0.5 | 511-729 | | ø8-ø10 | | | | \ | C208 | 208/131 | 10.5 +-0.7 | 4.7 +-0.5 | or | | ø8-ø10 | | | | | C225 | 225/141 | 10.5 +-0.7 | 4.7 +-0.5 | 511-760 | | ø8-ø10 | | | | | C242 | 242/153 | 10.5 +-0.7 | 4.7 +-0.5 | | | ø8-ø10 | | | | | C261 | 261/164 | 10.5 +-0.7 | 4.7 +-0.5 | | | ø8-ø10 | | | | | C280 | 280/176 | 10.5 +-0.7 | 4.7 +-0.5 | | | ø8-ø10 | | | ¹⁾ Special groove insert and sail feeder gate are required to accept bolt rope. If sail slider are to be used in combination with bolt rope insert, use HA 258/A019 or Rutgerson 102. ### C ### Groove insert for bolt rope C (2003) size C156-C304 #### C (2017) size C137-C280 Recommended bolt rope: Ø10mm Recommended bolt rope: Ø8mm ## E&C #### 2.2 Mast deflection curves Our spars and fittings are designed to cope with a maximum longitudinal deflection of 2% of the fore-triangle height (FH). On fractional rigs the maximum deflection can be taken as being 2% of the mainsail luff (P). These values are guiding principles only. The conditions are: - 1) The mast forms an even curve (convex front) from deck level to mast-head. - 2) The deflection must be kept within the stated values, even in rough seas, by suitable longitudinal staying. The deflection curve is formed by: It may be possible to increase the above values on some masts. However, in such cases the customer must request a special calculation for this from Seldén Mast, and have our written agreement for the increase in deflection depth. ## D&E ### 2.3 Head measurements, Yacht masts See page 38-41 for furling mast and page 42-43 for Furlex Main - Retro-fit system. C | A (mm) | | | | | | | |
--------|---------------|---------------------------|------------------------|--|--|--|--| | | C-mast | | | | | | | | | Mast-
head | Fractional std/long crane | Tapered std/long crane | | | | | | C156 | 70 | 80/280 | 80/270 | | | | | | C175 | 105 | 115/280 | 85/295 | | | | | | C193 | 100 | 100/265 | 75/200 | "A" = | | | | | C211 | 110 | 115/235 | 105/240 | 75-100 mm. | | | | | C227 | 110 | 100/220 | 90/225 | (With non-tapered | | | | | C245 | 115 | 120/285 | 110/210 | fractional rigs using section D-109/88 | | | | | C264 | 110 | 100/265 | 65/95 | or E-122/85 the | | | | | C285 | 100 | 130 | 90/120 | measurement is | | | | | C304 | 175 | 110 | 80/110 | 25 mm | | | | | C321 | 175 | 140/190 | 110 | | | | | | C365 | 240 | 155 | 110 | | | | | (But fractional rig!) To avoid the halyard splice or Talurit damaging the mast-head sheave, dimension "B" must not be shorter than that shown. When choosing the "B" measurement, consideration must be taken to dimension HB and the mainsail roach in relation to the backstay. For other halyard boxes the "B" measurement is calculated from the upper edge of the sheave to the topmost point of the sail. | Rope halyard | | | | | | | |-------------------|----------------|-------------------|--|--|--|--| | Rope
Dimension | "B" mm
Knot | "B" mm
Spliced | | | | | | Ø 6 mm | 60 | 430 | | | | | | Ø 8 mm | 70 | 430 | | | | | | Ø 10 mm | 80 | 430 | | | | | | Ø 12 mm | 90 | 440 | | | | | | Ø 14 mm | 100 | 440 | | | | | | | | | | | | | | Wire halyard | | | | | | | |---------------------------|---------------------------------------|--|--|--|--|--| | Halyard Wire
Dimension | "B" mm
Hand-Spliced
Halyard Eye | "B" mm
Talurit-Spliced
Halyard Eye | | | | | | Ø 3 mm | 200 | 140 | | | | | | Ø 4 mm | 230 | 150 | | | | | | Ø 5 mm | 260 | 170 | | | | | | Ø 6 mm | 300 | 200 | | | | | | Ø 7 mm | 350 | 230 | | | | | | Ø 8 mm | 400 | 250 | | | | | ## 2.4 Head measurements, keelboat See page 38-41 for furling mast and page 42-43 for Furlex Main - Retro-fit system. | | Masthead | | Fractional | | | | | | | |---------|----------|--------|--|----|---------------------------|-----|-----|------------|-----| | | | Non ta | Non tapered Tapered mast | | | | | | | | | | ma | mast Standard crane Long crane Top with spin blo | | Standard crane Long crane | | | spin block | | | Section | AA | AA | ВВ | AA | ВВ | AA | ВВ | AA | ВВ | | C087 | - | 65 | 75 | 58 | 65 | 149 | 90 | 99 | 75 | | C096 | - | 56 | 75 | 52 | 65 | 143 | 90 | 93 | 75 | | C106 | - | 80 | 85 | 70 | 70 | 180 | 100 | 105 | 80 | | C116 | - | 70 | 85 | 63 | 70 | 173 | 100 | 99 | 80 | | C126 | 70 | 95 | 90 | 83 | 85 | 212 | 120 | 127 | 100 | | C139 | 65 | 82 | 90 | 74 | 85 | 203 | 120 | 118 | 100 | | Rope halyard | | | | | | | |-------------------|----------------|-------------------|--|--|--|--| | Rope
Dimension | "B" mm
Knot | "B" mm
Spliced | | | | | | Ø 5 mm | 60 | 430 | | | | | | Ø 6 mm | 60 | 430 | | | | | | Ø 8 mm | 70 | 430 | | | | | | Ø 10 mm | 80 | 430 | | | | | | Ø 12 mm | 90 | 440 | | | | | | Ø 14 mm | 100 | 440 | | | | | To avoid the halyard splice or Talurit damaging the mast-head sheave, dimension "B" must not be shorter than that shown. For other halyard boxes the "B" measurement is calculated from the upper edge of the sheave to the topmost point of the sail. ## 3 Mainsails ## D&E ### 3.1 Fitting slides To avoid jamming in the luff groove, slides must have freedom of movement on the sail. C Fig. 3.1.a Correct: Free-moving fixture Wrong: Stiff fixture Several systems are available for full length battens. Seldén's different systems (RCB, MDS, OWS & IWS) are presented in this guide. Refer to the relevant manufacturers concerning other systems. #### 3.2 Sail slides E-masts It is imperative that the correct sliders are used on Seldén masts in order to fit the Seldén sail feeder gate. | Art. no. | Slider (mm) | Fits luff groove (mm) | Breaking
load | Bainbridge part no. | |----------|-------------|-----------------------|--------------------|---------------------| | 511-601 | 5.5 | 4 | 700 N
(70Kp) | A 013 | | 511-602 | 7 | 5 | 2250 N
(225Kp)) | A 014 | | 511-603 | 77 | 5.5 | 4000 N
(400 Kp) | A 015 | ## C ### 3.3 Sail slides C-masts It is imperative that Seldén slides are used on Seldén masts in order to fit the Seldén sail feeder gate. | Art. no. | Slider (mm) | Fits luff groove (mm) | Breaking
load
(N) | Bainbridge
part no. | |----------|-------------|-----------------------|-------------------------|------------------------| | 511-605 | 5.1 | 10 | 2250 N
(225 Kp) | A011 | | 511-607 | 5.1 | 10 | 4000 N
(400 Kp) | A012 | ¹⁾ For Mast sections, see page 11 and 13. ## D&E ### 3.4 Shackles for sliders | Art. no. | Shackle (mm) | Fits slide
(mm) | Breaking
load
(N) | Bainbridge
part no. | |------------|--------------|--|-------------------------|------------------------| | 307-094-01 | 8.5 45.1 | 511-602
511-603
511-605
511-607 | 2000N
(200 Kp) | - | Important! The shackle should not to be used with MDS cars. #### 3.5 OWS (Outer Wheel Support) slider Seldén OWS sliders are designed both as batten sliders and webbing sliders. Each model is available in 5 different versions. One version fits Seldén E-sections (1977-2002) and older Seldén/Kemp oval sections. Any of the other 4 versions fits most of all other mast brands on the market. OWS sliders do not fit Seldén C-section for which MDS-sliders should be used. #### **OWS** slider for webbing To acheive maximum strength, the OWS slider should be attached to the main sail using a webbing strap. All sliders for webbing can be used for headboard attachments and as intermediate sliders. #### **OWS** slider for batten The OWS batten slider is designed to take compression load from the batten in a full batten main sail. To achieve optimal function and strength, use Seldén toggle M10 stud 511-739-01. #### **OWS** compatible sail feeder gates The OWS E-section slider (511-740 and 511-750) can be used with, and **passes through** Seldén sail feeder gate 505-501-01. The OWS sliders 511-744 and 511-754 for keelboat sections (C106-C139) can be used with and passes through Seldén sail feeder gate 505-533-02. #### 3.5.1 OWS slider - dimensions All sliders for webbing can be used for headboard attachments and as intermediate sliders. $1) \ OWS \ sliders \ do \ not fit \ Seld\'en \ C-section \ for \ which \ MDS-cars, \ C \ (2003) \ or \ Inner \ Wheel \ Sliders, \ C \ (2017) \ \ should \ be \ used.$ ## 3.5.2 OWS slider - range | Туре | Art. No. | Fits luff
groove
(mm) | Breaking
load
(N) | Assembly
Art. No. | | Parts
Art. No. | | |------------------------------------|----------|-----------------------------|-------------------------|----------------------|------------|-------------------------|---------| | OWS
slider webbing | 511-740 | 5.5 | 5000 | 511-740-01 | | | | | OWS
slider batten | | 5.5 | 7000 | 511-750-03 | 511-750-01 | 511-739-01
M10 screw | 153-117 | | | 511-750 | | | 511-750-02 | 511-750-01 | | 153-117 | | OWS
slider webbing | 511-741 | 10 | 5000 | 511-741-01 | | | | | OWS
slider batten | | 10 | 7000 | 511-751-03 | 511-751-01 | 511-739-01
M10 screw | 153-117 | | | 511-751 | | | 511-751-02 | 511-751-01 | | 153-117 | | OWS
slider webbing | 511-742 | 10 | 5000 | 511-742-01 | | | | | OWS
slider batten | | 10 | 7000 | 511-752-03 | 511-752-01 | 511-739-01
M10 screw | 153-117 | | | 511-752 | | | 511-752-02 | 511-752-01 | | 153-117 | | OWS
slider webbing | 511-743 | 12 | 5000 | 511-743-01 | | | | | OWS
slider batten | | 12 | 7000 | 511-753-03 | 511-753-01 | 511-739-01
M10 screw | 153-117 | | | 511-753 | | | 511-753-02 | 511-753-01 | | 153-117 | | OWS
slider webbing
Big wheel | 511-744 | 5.5 | 5000 | 511-744-01 | | | | | OWS
slider batten
Big wheel | | 5.5 | 7000 | 511-754-03 | 511-754-01 | 511-739-01
M10 screw | 153-117 | | | 511-754 | | | 511-754-02 | 511-754-01 | | 153-117 | | Туре | | Fits | mast section | (only geomet | ric fit) | | | | |--|--|--|--|--------------------------------------|-----------------------------------|---|--------------------------------------|--| | OWS | | Seldén | | John Mast Soromap Sparcraft Z-spars | | | | | | slider webbing
511-740 | E-section
(10° aft face) | E-section
(round aft face) | D-section | 135D
148D
150D | NF200
NF270
NF350 | F135
F195
F305 | Z301
Z351
Z380 | | | | 138/95
155/104
170/115
177/124
189/132 | 147/95
162/104
178/115
216/139
239/162 | 129/100
137/113
146/112
160/132 | 165D
167D
185D
186D
208D | NF430
NF540
NF710
NF1410 | F385
F460
I620
S622
I830 | Z401
Z501
Z531
Z601
Z602 | | | OWS
slider batten
511-750 | 206/139
224/150
237/162
274/185 | 2557102 | | 222D
245D
280D
305D
335D | | S830 | Z701
Z702 | | | OWS
slider webbing
511-741 | | | | | | | | | | OWS
slider batten
511-751 | | | | | | | | | | OWS
slider webbing
511-742 | OWS
slider batten
511-752 | OWS
slider webbing
511-743 | | | | 220E
262E
290E | | NG60
NG70
NG80
NG86
F580
F740 | Z902
Z1001
Z1250
Z1400 | | | OWS
slider batten
511-753 | | | | | | F1060
F1395
S1630
S2100
F2390
F3360
F4600 | | | | OWS
slider webbing | C-section | | | 150E
116E | | F35
F50 | Z170
Z190 | | | Big wheel 511-744 | C106
C116
C126
C139 | | | 125E | |
F67
F78
F101
S137
S180 | Z230
Z265 | | | OWS
slider batten
Big wheel
511-754 | | | | | | \$260
\$330
IM\$80
IM\$256 | | | | | | | | | | | | | ### 3.6 MDS Full batten system for C-masts (2003) | <u> </u> | Important! Only MDS car 511-702 MUST be but will NOT function properly. | used in | the mast | s sections below. 511-701 is possible to fit | |--------------|---|---------|----------|--| | Mast section | | C156 | C175 | C193 | | MDS car | 511-702 | | | 511-701 | ## 3.6.2 Parts and RM-limits, MDS 45, MDS 68 and MDS 68 ALU 511-701-06/511-717-06 511-701-03/511-717-03 511-723 | | Assembly | Max RI
Asse | | Parts | Parts | | Section | | |----------------------|--|-----------------|----------------|--|--|---------|--|--| | Head | 511-707-01 | Mh
90 | Frac 70 | 511-707 | 166-234-0 | 1 | C156 C211
C175 C227
C193 C245 | | | board | 511-708-01 | 160 | 120 | 511-708 | 166-234-0 | 1 | C264
C285
C304 | | | | 511-702-04 | 55 | 40 | 511-707-01 | MDS 45 511-702-01 | 153-118 | C156
C175
C193 | | | Head
board
car | 511-701-04 | 90 | 70 | 511-707-01 | MDS 68 511-701-01 | 153-117 | C211 C264
C227 C285
C245 C304 | | | | 511-701-06
MDS 68 ALU 511-717-06 | 160
330 | 120
250 | 511-708-01 | MDS 68 511-701-01
MDS 68 ALU 511-717-01 | | | | | | 511-702-03 | | | MDS 45 511-702-01 | 511-712-01 M10 screw | 153-118 | C156 | | | Batten | 511-702-08 | 90 70 | | MDS 45 511-702-01 | 511-723 ¹⁾ | 153-118 | C175
C193 | | | Car | 511-701-03
MDS 68 ALU 511-717-03 | 160
330 | 120
250 | MDS 68 511-701-01
MDS 68 ALU 511-717-01 | 511-712-01 M10 screw | 153-117 | C211
C227
C245 | | | | MDS 68 511-701-08
MDS 68 ALU 511-717-08 | 160
330 | 120
250 | MDS 68 511-701-01
MDS 68 ALU 511-717-01 | 511-723 ¹⁾ | 153-117 | C264
C285
C304 | | | Sail | MDS 45 511-702-02 | 90 | 70 | MDS 45 511-702-01 | (| 153-118 | C156 C245
C175 C264
C193 C285
C211 C304
C227 | | | Car | MDS 68 511-701-02 | 160 | 120 | MDS 68 511-701-01 | | | C211 C264
C227 C285
C245 C304 | | | | MDS 68 ALU 511-717-02 | 330 | 250 | MDS 68 ALU 511-717-01 | 511-719 | 153-117 | | | ¹⁾ Measurement see fig. 3.6.2.c. # 3.6.3 IWS Full batten system for C-masts, C137, C153, C180 (2017-) ## 3.6.4 Parts and RM-limits, IWS 45, C137, C153, C180 | | Assembly | - | M kNm
mbly | Parts | Parts | | |----------------------|-------------------|-----------------|----------------|-------------------|---|---------| | Head
board | | Mh
90 | Frac 70 | | 0 | | | | 511-707-01 | | | 511-707 | 166-234-0 |)1 | | Head
board
car | | 90 | 70 | | B (8720 | | | | 511-729-04 | | | 511-707-01 | IWS 45 511-729-01 | 153-118 | | | | | | 9 100.22 | · • • • • • • • • • • • • • • • • • • • | | | Batten
Car | 511-729-03 | 160 | 120 | IWS 45 511-729-01 | 511-712-01 M10 screw | 153-118 | | | 9 | | | 3 10 730 | <u></u> | (D) | | | 511-729-08 | | | IWS 45 511-729-01 | 511-723 ¹⁾ | 153-118 | | Sail
Car | § | 90 | 70 | B 10-72 | | (O) | | | IWS 45 511-729-02 | | | IWS 45 511-729-01 | 511-719 | 153-118 | ¹⁾ Measurement see fig. 3.6.2.c. # 3.6.5 IWS Full batten system for C-masts, C192, C225, C242, C261, C280 (2017-) # 3.6.6 Parts and RM-limits, IWS 45 HD, IWS 68 Masts C192,C225,C242,C261,C280 Fig. 3.6.2.a Fig. 3.6.2.b Fig. 3.6.2.c | | 511-760-06 | | | 511-760-03 511-723 | | | | | |----------------------|--|---------|---------|----------------------|-----------------------|---------|--|--| | | Assembly | | M kNm | Parts | Parts | | | | | Head | 511-707-01 | 90 | Frac 70 | 511-707 | 0 166-234-0 | 1 | | | | board | 511-708-01 | 160 120 | | 511-708 | 166-234-01 | | | | | | 511-773-04 | 90 | 70 | 511-707-01 | IWS 45 HD 511-773-01 | 153-118 | | | | Head
board
car | 511-760-04 | 90 | 70 | 511-707-01 | IWS 68 511-760-01 | 153-117 | | | | | ************************************** | | | • | | | | | | | 511-760-06 | 330 | 250 | 511-708-01 | IWS 68 511-760-01 | 153-117 | | | | | 511-773-03 | | | IWS 45 511-773-01 | 511-712-01 M10 screw | 153-118 | | | | Batten | 511-773-08 | 160 | 120 | IWS 45 HD 511-773-01 | 511-723 ¹⁾ | 153-118 | | | | Car | 511-760-03 | 160 | 120 | IWS 68 511-760-01 | 511-712-01 M10 screw | 153-117 | | | | | | | | | <u></u> | | | | | Sail | IWS 68 511-760-08 | 90 | 70 | IWS 68 511-760-01 | 511-7231) | 153-117 | | | | Car | IWS 45 HD 511-773-02 | | | IWS 45 HD 511-773-01 | 511-719 | 153-118 | | | | | IWS 68 511-760-02 | 160 | 120 | IWS 68 511-760-01 | 511-719 | 153-117 | | | ¹⁾ Measurement see fig. 3.6.2.c. C ## 3.6.7 MDS 80 Full batten system Fig. 3.6.3.a ## 3.6.8 Parts and RM-limits, MDS 80 and MDS 80 HD* $\,$ Fig. 3.6.4.a Fig. 3.6.4.b 511-730-06/511-731-06 511-730-03/511-731-06 | | Assembly | Max RI
Asse
Mh | | Parts | Parts | | Section | |-----------------------|--|----------------------|------------|---|----------------------------------|---------|--------------| | Head
board | 511-728-01 | 550 | 450 | 511-728 | 165-504-01 | | C321
C365 | | Heard
board
car | MDS 80 511-730-06
MDS 80 HD 511-731-06 | 250
550 | 200
450 | 511-728-01 | 511-730-01 | 153-139 | C321
C365 | | Batten
car | MDS 80 511-730-03 M10 screw
MDS 80 511-730-09 M12 screw
MDS 80 HD 511-731-03 M10 screw
MDS 80 HD 511-731-09 M12 screw | 250
550 | 200
450 | MDS 80 511-730-09
MDS 80 HD 511-731-09 | MDS 80 511-730-09 511-727-01 M12 | | C321
C365 | | Sail car | MDS 80 511-730-02
MDS 80 HD 511-731-02 | 250
550 | 200
450 | MDS 80 511-730-01
MDS 80 HD 511-731-01 | 153 | -139 | C321
C365 | ^{*} MDS 80 HD has machined aluminium body ## D&E ## 3.7 Seldén – RCB full batten System 22 and System 30 #### 3.7.1 Dimensions ## D&E #### 3.7.2 Parts The slide attachment eye is easily detached from the slide and can be sent to the sailmaker separately. It also facilitates fitting the mainsail. | | | Connectors | Car | Total assembly | |---------------------------|--------------|------------|------------|----------------| | Head-board
car | | | | | | | RCB 22 | 511-595-11 | 511-581-11 | 511-595-01 | | | RCB 22 Light | 511-703-11 | 511-703-11 | 511-703-11 | | | RCB 30 | 511-695-11 | 511-681-11 | 511-695-01 | | Batten car All-Round: | | | | | | Fits Rutgerson | RCB 22 | 511-590-01 | <u> </u> | 511-581-04 | | batten fitting and others | RCB 22 Light | 511-703-11 | | 511-703-11 | | and others | RCB 30 | 511-690-01 | — | 511-681-04 | | Batten car
With M-10 | | | | | | screw:
Fits Bainbridge | RCB 22 | 511-598-01 | 511-581-11 | 511-581-03 | | batten fitting | RCB 22 Light | 511-703-11 | 511-703-11 | 511-703-11 | | and others | RCB 30 | 511-692-01 | 511-681-11 | 511-681-03 | | 0.11 | | © P | F F | | | Sail car | RCB 22 | 511-590-01 | 511-581-11 | 511-581-04 | | | RCB 22 Light | 511-703-11 | 511-703-11 | 511-703-11 | | | RCB 30 | 511-690-01 | 511-682-11 | 511-681-04 | # 3.7.3 Try Sail slider (Part. no.: 511-713) - Three sliders at the head and tack of the sail c/c 50 mm (2"). Remaining cars to be fitted with c/c ~400 mm (16"). - For sufficient articulation always connect cars to sail via shackles. - For less friction use Seldén Silicone lubricant (Part No. 312-506) or similar products on the track. - Breaking load 2.6 kN. #### 3.8 Sail Feeder Gates #### 3.8.1 Seldén E-section Sail Feeder Gate The Seldén E-section sail feeder gate allows reefing without needing to remove the slides from the luff groove. Ensure that the measurement "G" is sufficient to allow the reef cringle to be hooked on with the slides in place in the luff groove. "L"= the largest possible slide spacing as recommended by the sailmaker. Note. Remember that the reef cringles also have "cut-back" to reduce horizontal loading on the nearest slide. See Reef-hook cut-back "F"or Single Line Reef cut-back "S" at chapter 5, Slab reefing booms. Fig. 3.8.1.b Sail feeder insert Art. no. 505-516-01 or 505-524-01 Discontinued Sail slide cassette kit Art. no. 505-514-01 Fig. 3.8.1.d #### Section Series E122/85-274/185 & D109/88-160/132 The sail feeder is fitted with a removable gate to permit the mainsail to be fitted with either a luff rope or with slides. See fig. 3.8.1.b. Length of outer oval casing of 505-501-01 is 160 mm, 505-503-01 is 130 mm. Fig. 3.8.1.c #### Section Series E126/85-239/162 & P73/53-188/137 From 1977 to 1979 inclusive, these sections were fitted with the sail feeder gate mentioned above. Earlier sections have a dilated luff groove just above the gooseneck fitting to allow either luff rope or slides to be fed in. An extension tube, see fig. 3.8.1.d (part number 505-514-01) is obtainable as extra equipment for these masts. This allows slides to move down the luff groove to the upper edge of the gooseneck fitting, and permits reefing in the same way as in fig. 3.8.1.a. #### Sail feeder Gate Insert for Full length Batten Cars For sails with full batten sliders, a sail groove insert is available (see fig. 3.8.1.c). This insert was developed for full batten sliders from other brands than Seldén. Seldéns own full batten slider (OWS slider) does not need this extra insert as the OWS slider can passes through the original Seldén sail feeder gate 505-501-01/505-503-01. #### For other brands of full batten sliders: Insert 505-516-01 can be fitted instead of the original sail feeder gate 505-501-01. (Sections E138/95-E274/185 & D129/100-D160/132). Insert 505-524-01 can be fitted instead of the original sail feeder
gate 505-503-01. (Sections E122/85, E130/93, D109/88 & D121/92). #### 3.8.2 Seldén MDS Sail Feeder Gate - Yacht mast The Seldén C-section sail feeder gate allows reefing without needing to remove the slides from the luff groove. Ensure that the measurement "G" is sufficient to allow the reef cringle to be hooked on with the slides in place in the luff groove. "L" = the largest possible slide spacing as recommended by the sailmaker. Note. Remember that the reef cringles also have "cut-back" to reduce horizontal loading on the nearest slide. See Reef-hook cut-back "F"or Single Line Reef cut-back "S" at chapter 5, Slab reefing booms. Fig. 3.8.2.b MDS Sail feeder gate for C156-C304 Part. no. 505-519-01 Fig. 3.8.2.c MDS Sail feeder gate for C321 and C365 Part. no. 507-309-01 #### Instructions for the MDS sail feeder gate. The MDS-sail feeder gate is designed for use with MDS cars or conventional sail sliders. When using MDS cars, simply remove the sail feeder gate when installing or removing the cars. When using it with conventional sliders, feed the sliders through the spring-loaded mid section of the sail feeder gate. #### 3.8.3 Seldén IWS Sail Feeder Gate - Yacht mast The Seldén C-section sail feeder gate allows reefing without needing to remove the slides from the luff groove. Ensure that the measurement "G" is sufficient to allow the reef cringle to be hooked on with the slides in place in the luff groove. "L" = the largest possible slide spacing as recommended by the sailmaker. Note. Remember that the reef cringles also have "cut-back" to reduce horizontal loading on the nearest slide. See Reef-hook cut-back "F"or Single Line Reef cut-back "S" at chapter 5, Slab reefing booms. Fig. 3.8.2.b IWS Sail feeder gate for C137-C180 Part. no. 505-552-01 Fig. 3.8.2.c IWS Sail feeder gate for C192-C280 Part. no. 505-554-01 #### Instructions for the IWS sail feeder gate. The IWS-sail feeder gate is designed for use with IWS cars or conventional sail sliders. When using IWS cars, simply remove the sail feeder gate when installing or removing the cars. When using it with conventional sliders, feed the sliders with gate in position. | Feeding IWS Cars | Feeding Sail sliders | |--|---| | Fig. 3.8.2.d | | | Sail feeder gate is easily removed to fit or remove Seldén IWS cars. 1. Press at the top of the gate. 2. Push the Sail feeder gate body upwards. | Sail feeder gate is designed for use with Seldén IWS cars or conventional sail sliders. | #### 3.8.4 Seldén Sail feeder Gate - Keelboat The Seldén C-section sail feeder gate allows reefing without needing to remove the slides from the luff groove. Ensure that the measurement "G" is sufficient to allow the reef cringle to be hooked on with the slides in place in the luff groove. "L" = the largest possible slide spacing as recommended by the sailmaker. Note. Remember that the reef cringles also have "cut-back" to reduce horizontal loading on the nearest slide. See Reef-hook cut-back "F"or Single Line Reef cut-back "S" at chapter 5, Slab reefing booms. #### Section Series C080 - C139 The sail feeder is fitted with a removable gate to permit the mainsail to be fitted with either a luff rope or with slides. See fig. 3.8.3.b. ## How to fit sail feeder ## How to remove sail feeder ## 4 Batten receptacles ### **Batten receptacles** screw. No need to fully release the screw to remove the cover. chafe on the mast surface. ## 4.1 Batten receptacle fittings The fittings are designed to be used with toggle M10 stud (511-712-01, 511-727-02 or 511-739-01). Fig. 4.1.a The adjustable batten receptacles are available for either round or rectangular battens. Fig. 4.1.b (461-210-01) Fig. 4.1.c (461-210-02) ## 4.2 Batten receptacle range | Туре | Art. No. | Batter
(m | n sizes
im) | E | Batten receptacle | Adj.
length | Stud dim. | |-------|------------|--------------|----------------|---|--|----------------|-----------| | | | Round | Flat | | | (mm) | | | P-30 | 461-237-01 | Ø10 | 5.5x31 | | | - | M10 | | P-40 | 461-235-01 | Ø10 | 5.5x41 | 8 | O STALLARD D - COL | - | M10 | | A-17 | 461-210-01 | - | 6.5x18 | | | 38 | M10 | | | 461-210-02 | Ø8 | - | | | | | | FA-22 | 461-220-01 | - | 9.5x23 | | | 33 | M10 | | | 461-220-02 | Ø10 | - | | | | | | FA-30 | 461-230-01 | - | 6.5x31 | | os en antis | 36 | M10 | | | 460-230-02 | Ø12 | - | | O STATE OF THE PARTY PAR | | | ## 5 Seldén booms # Boom ID engraved on most boom extrusions to simplify identification | Boom | Dim | Section
Geometry | Luff foot
groove
mm | T-track | Comment | |-------------------|---------|---------------------|---------------------------|----------|--| | 85/58 | 85/58 | Α | 4.0±0.5 | 16mm | Produced ~1977-1991 | | 86/59 | 85/59 | Α | 4.5±0.5 | 16mm | Produced ~1992-2010 | | B087 | 86/60 | В | 5.5±0.6 | 20mm | In production since 2006 | | B104 | 104/60 | В | 5.5±0.6 | 20mm | In production since 2006 | | 111/75 | 111/75 | Α | 5.5±0.75 | 25mm | Produced ~1977-1991 | | B120
(120/62) | 120/62 | В | 5.5±0.75 | 25mm | In production since 1991. Design update & renamed to B120 in 2008. | | B128/90 | 128/90 | Α | 5.5±0.75 | 25mm | | | B135 | 135/71 | В | 5.5±0.75 | 25mm | In production since 2006 | | B143
(143/76) | 143/76 | В | 5.5±0.75 | 25mm | Produced ~1992-2007. Design update & renamed to B143 in 2008. | | 150/105 | | Α | 5.5±0.75 | 25mm | | | B152 | 152/82 | В | 5.5±0.75 | 25mm | Produced 2005-2018. Replaced by B153 | | B153 | 153/86 | С | 10+-0.75 | 25mm | In production since 2018. | | 162/125 | | Α | 5.5±0.75 | 25mm | | | B171
(171/94) | 171/94 | В | 5.5±0.75 | 25mm | Produced 1991-2016. Replaced by B172. Design update & renamed to B171 in 2008. | | B172 | 171/98 | С | 10+-0.75 | 25mm | In production since 2016 | | B190 | 190/60 | D | 5.5±0.75 | 25mm | In production since 2006 | | B199 | 199/122 | С | 10+-0.75 | 32mm | In production since 2018 | | B200
(200/117) | 200/117 | В | 6.25±0.75 | 32mm | Produced 1991-2018. Replaced by B199. Design update & renamed to B200 in 2008. | | B230 | 230/70 | D | 6.25±0.75 | 32mm | In production since 2006 | | B232 | 232/138 | С | 11±0.75 | 32mm | New 2019 | | B250
(250/140) | 250/140 | В | 6.25±0.75 | 32mm | Produced 1991-2019. Design update & renamed to B250 in 2008 | | B256 | 256/156 | С | 11±0.75 | 32mm | New 2019 | | B290 | 290/155 | E | 10+-0.75 | 32mm | New 2008 | | B300 | 300/155 | E | 6.25±0.75 | 32mm | New 1993 replaced by B290 2008 | | B380 | 380/186 | F | No track | No track | New 2010 | # D&E 5 Slab reefing booms ### **Boom sections on conventional masts (through 1991)** (Tacks, reefing hooks etc) Slab reefing and roller reefing on older booms | | Boom
section | ga | eeder
ite
back" | k" | | Reef
hooks | No. of internal reefing lines | Reef line
attachment
at aft end
of boom | |
--|--|--------------------------|--------------------------|--|----------------------|------------------------|--|---|--| | | | C
mm | K
mm | D
mm | H | F
mm | | | | | | Grooved
Section
1977–1991 | | | | | | | | | | \frac{1}{2} | 85/58
86/59 | 600
600 | 190
190 | 60
60 | 0
0 | 50
50 | 2
2 | Reefing line tied fast to slide on the boom. Free choice of | | | | 111/75
128/90
150/105
162/125 | 830
830
830
830 | 205
225
265
330 | 75
75
60
60 | 10
20
30
25 | 65
65
105
105 | 2
2
3
4 | number of slides. | | | | E-Section
1982–1991
189/132 | | | | | | | Reefing line tied around boom; see fig. 5.2.a, | | | | 206/139 | 830
830 | 330
330 | 60
60 | 25
25 | 105
105 | 4
4 | page 26. | | | | P-Section
1969–1980
73/53
90/65
111/81 | | exis
b | veral val
st. Spar
e individ
measur | s must
dually | | Usually roller reefing booms, but also slab-reefing booms with external reefing lines occur. | Adjustable slides on tracks occur, but reefing lines can also be tied around boom. See fig. 5.2.a page 26. | | ## D&E ### 5.2 Traditional slab-reefing booms from 1991 inclusive 2003 #### Important! - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. (See table 5.13). Fig. 5.2.a | | Boom
section | Sail feeder
gate
"cut-back" | | Tack | | Reef
hooks | No. of internal reefing lines | Reef line
attachment
at aft end
of boom | | |-----|-----------------|-----------------------------------|---------|---------|----|----------------------------|-------------------------------------|--|--| | | | C | K
mm | D
mm | H | F
mm | | | | | | 120/62 | 830 | 215 | 75 | 10 | 65 | 2 slab reefs +
1 flattening reef | Reefing line tied around boom; | | | | 143/76 | 830 | 160 | 80 | 20 | 80 | 3 slab reefs | see fig. 5.2.a. | | | | 171/94 | 830 | 190 | 80 | 20 | 80 | 3 slab reefs | | | | | 200/117 | 830 | 250 | 100 | 20 | 110 | 4 slab reefs | | | | | 250/140 | 830 | 275 | 100 | 20 | 110 | 4 slab reefs | | | | (F) | 300/155 | 830 | 100 | 77 | 37 | Running
hook
page 36 | 2–4 slab reefs | | | ### 5.3 Traditional slab-reefing booms on C-mast from 2003 - 2007 Clews, see page 35. #### Important! - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. (See table 5.13). D H Fig. 5.3.b 2nd reef to port. Etc. - 100 mm 3rd reef to starboard. ### C ### 5.4 Traditional slab-reefing booms on C-mast from 2008 #### Important! - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. (See table 5.13). Fig. 5.5.a | Mast section | | Boom section | Sail feeder gate
"cut-back" | | | Tack | | Reef
hooks | No. of internal reefing lines | Reef line attachment | | |------------------------------|----------------------|--------------|--------------------------------|---------------------------|-----|----------|----|----------------------------|-------------------------------------|--|--| | | | | C
(MDS
slides)
mm | C
(bolt
rope)
mm | K | D
mm | H | F
mm | | at aft end
of boom | | | C080 | C116 | B087 | ~ | 600 | 55 | | 0 | 70 | 2 slab reefs | D. C. C. | | | C080
C087
C096
C106 | C116
C126
C139 | B104 | ~ | 600 | 55 | 55
55 | 0 | 70 | 2 slab reefs | Reefing line tied around boom; see fig. 5.5.a. | | | C126
C139 | | B120 | ~ | 600 | 165 | 65 | 20 | 70 | 2 slab reefs | 300 lig. 0.3.u. | | | C156 | C137 | B087 | 130 | 750 | 55 | 65 | 20 | 70 | 2 slab reefs | | | | | | B104 | | | | | | | | | | | C156
C175 | | B120 | 130 | 750 | 150 | 80 | 35 | 80 | 2 slab reefs +
1 flattening reef | | | | C193
C211 | C180
C192 | B135 | 130 | 750 | 105 | 80 | 30 | 80 | 3 slab reefs | | | | C227 | C208 | B152 | 120 | 750 | 105 | 80 | 20 | 80 | 3 slab reefs | | | | C245 | C225 | B153 | 120 | 750 | 70 | 80 | 20 | 80 | 3 slab reefs | | | | | | B171 | 110 | 750 | 120 | 80 | 20 | 80 | 3 slab reefs | | | | | | B172 | 110 | 750 | 100 | 80 | 20 | 65 | 3 slab reefs | | | | | | B199 | 170 | 750 | 100 | 100 | 15 | 80 | 3 slab reefs | | | | | | B200 | 170 | 750 | 175 | 100 | 15 | 80 | 4 slab reefs | | | | C264 | C242 | B171 | 180 | 750 | 135 | 100 | 45 | 110 | 3 slab reefs | | | | C285
C304 | C261
C280 | B172 | 180 | 750 | 110 | 100 | 50 | 95 | 3 slab reefs | | | | C225 | | B199 | 150 | 750 | 100 | 100 | 15 | 110 | 4 slab reefs | | | | | | B200 | 150 | 750 | 175 | 100 | 15 | 110 | 4 slab reefs | | | | | | B232 | 157 | 750 | 65 | 80 | 10 | 90 | 4 slab reefs | | | | | | B250 | 157 | 750 | 175 | 100 | 15 | 110 | 4 slab reefs | _ | | | | | B290 | 170 | 750 | 75 | 100 | 35 | Running
hook
page 36 | 2–4 slab reefs | | | | | | B300 | | | | | | | | | | | C365 | | B380 | 210 | _ | 150 | 80 | 0 | | | | | | C405 | | | - | | | | | | | | | ## D&E ### 5.5 Single line reef booms from 1991 - 2003 #### Important! - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. (See table 5.13). | | Boom
section | | | Tack | | Single
line
reef | No. of internal reefing lines | Reef line attachment | Max height
for reef 1
(Starboard) | Max height
for reef 2
(Port) | |---|-----------------|---------|-----|------|----|------------------------|--|----------------------|---|------------------------------------| | | | C
mm | К | D | Н | S¹)
mm | | | 3) | 3) | | | | | mm | mm | mm | | | | mm | mm | | | 120/62 | 830 | 215 | 75 | 10 | 120 | 2 single line +
1 flattening | Reef line attached | E-1800 | E-600 | | | 143/76 | 830 | 160 | 80 | 20 | 140 | 2 single line +
1 traditional
slab reef ²) | as per
fig. 5.6.a | E-1800 | E-700 | | | 171/94 | 830 | 190 | 80 | 20 | 150 | | | E-1900 | E-850 | | | 200/117 | 830 | 250 | 100 | 20 | 190 | 2 single line +
2 traditional | | E-2000 | E-950 | | 4 | 250/140 | 830 | 275 | 100 | 20 | 200 | slab reefs ²) | | E-2500 | E-1100 | ¹⁾ The "S" measurement includes the shackle supplied by Seldén Mast. Comprehensive instructions on Single Line reefs can be obtained from Seldén Mast; reference No 595-664-SET, (in Swedish, English and German). ²⁾ Running Reef Hooks as shown on page 36 should be used for traditional 3rd and 4th slab reefs in conjunction with Single Line Reefs. If permanent reef hooks are used at the tack there is a risk that the sail can snag when a Single Line Reef is shaken out. ^{3) &}quot;Max height" information refer to
forward reef cringle only. ### C ## 5.6 Single line reef booms on C-mast from 2003 - 2007 #### Important! - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. (See table 5.13). | Mast section | Boom
section | Sail feeder gate
"cut-back" | | | Tack | | Single
line
reef | No. of internal reefing | Reef line attachment | Max height
for reef 1
(Starboard) | Max height
for reef 2
(Port) | |--------------|-----------------|--------------------------------|---------------------------|-----|---------|----|------------------------|---|--------------------------|---|------------------------------------| | | | C
(MDS
slides)
mm | C
(bolt
rope)
mm | K | D
mm | H | S ¹⁾ | lines | | 3)
mm | 3)
mm | | C156
C175 | 120/62 | 130 | 850 | 150 | 80 | 35 | 120 | 2 single line +
1 flattening | Reefing line tied around | E-1800 | E-600 | | C193
C211 | 143/76 | 110 | 830 | 165 | 80 | 20 | 140 | 2 single line +
1 traditional
slab reef ²⁾ | boom;
see fig. 5.7.a. | E-1800 | E-700 | | C227
C245 | 171/94 | 110 | 830 | 195 | 80 | 20 | 150 | | | E-1900 | E-850 | | | 200/117 | 110 | 830 | 270 | 80 | 20 | 190 | 2 single line + 2 tradi-
tional slab reefs ²⁾ | | E-2000 | E-950 | | C264
C285 | 171/94 | 180 | 830 | 210 | 100 | 45 | 180 | 2 single line + 1 tradi-
tional slab reefs ²⁾ | | E-1900 | E-850 | | C304 | 200/117 | 150 | 830 | 250 | 100 | 20 | 190 | 2 single line +
1 traditional | | E-2000 | E-950 | | | 250/140 | 150 | 830 | 275 | 100 | 20 | 200 | slab reefs ²⁾ | | E-2500 | E-1100 | ¹⁾ The "S" measurement includes the shackle supplied by Seldén Mast. Comprehensive instructions on Single Line reefs can be obtained from Seldén Mast; reference No 595-664-SET, (in Swedish, English and German). ²⁾ Running Reef Hooks as shown on page 36 should be used for traditional 3rd and 4th slab reefs in conjunction with Single Line Reefs. If permanent reef hooks are used at the tack there is a risk that the sail can snag when a Single Line Reef is shaken out. ^{3) &}quot;Max height" information refer to forward reef cringle only. ## 5.7 Single line reef booms on C-mast from 2008 #### **Important!** - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. (See table 5.13). | Mast
sectio | n | Boom
section | | eder g
t-back | | Та | ck | Single
line
reef | internal
reefing | Reef line attachment | Max height for reef 1 (Starboard) | Max height for
reef 2
(Port) | |------------------------------|--------------|--------------------|----------------------------|---------------------------|---------|---------|----|------------------------|---|---|-----------------------------------|------------------------------------| | | | | C
(MDS
slides)
mm | C
(bolt
rope)
mm | K
mm | D
mm | H | S ¹⁾ | lines | | 3)
mm | 3)
mm | | C080
C087
C096
C106 | | B087 | ~ | 600 | 55 | 55 | 0 | 95 | 2 single line | Reefing line
tied around
boom;
see fig. 5.8.a. | E-1650 | E-450 | | C106
C116
C126
C139 | | B104 | ~ | 600 | 55 | 55 | 0 | 95 | 2 single line | see lig. 5.6.a. | E-1650 | E-450 | | C126
C139 | | B120 | ~ | 600 | 165 | 65 | 20 | 70 | 2 single line | | E-1650 | E-450 | | C156 | C137 | B087
B104 | 130 | 750 | 165 | 65 | 20 | 105 | - | | - | - | | C156
C175 | C137
C153 | B120 | 130 | 750 | 150 | 80 | 35 | 70 | 2 single line +
1 flattening | | E-1650 | E-450 | | C193 | C180 | B135 | 130 | 750 | 105 | 80 | 30 | 165 | 2 single line +
1 traditional | | E-1800 | E-650 | | C211 | C192 | B152 | 120 | 750 | 105 | 80 | 20 | 165 | slab reef 2) | | E-1800 | E-750 | | C227 | C208 | B153 | 120 | 750 | 70 | 80 | 20 | 165 | | | | | | C245 | C225 | B171 | 110 | 750 | 120 | 80 | 15 | 165 | | | E-1900 | E-850 | | | | B172 | 110 | 750 | 100 | 80 | 20 | 150 | | | | | | | | B199 | 170 | 750 | 100 | 100 | 15 | 240 | | | | | | | | B200 | 170 | 750 | 175 | 100 | 15 | 240 | 2 single line + 2 traditional
slab reefs ²⁾ | | E-2000 | E-950 | | C245 | C242 | B171 | 180 | 750 | 135 | 100 | 45 | 200 | 2 single line + 1 traditional slab reefs ²⁾ | | E-1900 | E-850 | | C264 | C261 | B172 | 180 | 750 | 110 | 100 | 50 | 185 | | | | | | C285
C304 | C280 | B199 | 150 | 750 | 100 | 100 | 15 | 240 | | | | | | 0304 | | B200 | 150 | 750 | 175 | 100 | 15 | 240 | 2 single line +
1 traditional | | E-2000 | E-950 | | | | B232 ⁴⁾ | 170 | 750 | 65 | 80 | 10 | 180 | slab reefs ²⁾ | | E-2500 | E-1100 | | | | B250 | 150 | 750 | 175 | 100 | 15 | 240 | | | E-2500 | E-1100 | | | | B290 | 150 | 750 | 80 | 100 | 30 | 240 | | | E-2900 | E-1550 | The "S" measurement includes the shackle supplied by Seldén Mast. Running Reef Hooks as shown on page 36 should be used for traditional 3rd and 4th slab reefs in conjunction with Single Line Reefs. If permanent reef hooks are used at the tack there is a risk that the sail can snag when a Single Line Reef is shaken out. "Max height" information refer to forward reef cringle only. Length is calculated on 16-plait reef line. For low stretch lines, reef height may be increased. Loose footed sails only. ## C #### 5.8 Slab reef - Match booms #### Important! - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. (See table 5.13). Fi Fig. 5.9.b | Mast
section | Boom Sail feeder gate section "cut-back" | | Та | ck | Reef
hooks | No. of internal | Reef line
attachment | | | |--|--|----------------------------|---------------------------|----|---------------|-----------------|-------------------------|------------------|---| | | | C
(MDS
slides)
mm | C
(bolt
rope)
mm | K | D
mm | H | F
mm | reefing
lines | at aft end
of boom | | C175 C153
C193 C180
C211 C192
C227 C208 | B190 | 100 | 750 | 35 | 80 | 0 | 80 | 2 slab reefs | Reefing line
tied around
boom;
see fig. 5.9.a. | | C211 C192
C227 C208
C245 C225 | B230 | 80 | 750 | 45 | 80 | 20* | 80 | 2 slab reefs | | st Tack shackle below top of extrusion. ## 5.9 Single line reef Match booms ## $\hat{}$ #### Important! - 1. The reefing line is tied as illustrated, with a bowline and running noose. No. 1 reef is shown. Note that grommets are required along the foot for each reef. - 2. For loose-footed sails, the reef line loop must be held in the correct position along the boom, to ensure proper reefing. Seldén's eye slider can be used for this. | Fig. | 5 1 | 0 | ŀ | |-------|--------------|----------|----------------------| | 1 15. | ω . I | σ | $\boldsymbol{\iota}$ | | Mast
section | Boom
section | | eder ga
t-back | | Та | ck | Single
line
reef | No. of internal reefing | Reef line attachment | Max height
for reef 1
(Starboard) | Max height for reef 2 (Port) | |--|-----------------|----------------------------|---------------------------|----|---------|------|------------------------|-------------------------|--|---|------------------------------| | | | C
(MDS
slides)
mm | C
(bolt
rope)
mm | K | D
mm | H | S¹)
mm | lines | | 3)
mm | 3)
mm | | C175 C153
C193 C180
C211 C192
C227 C208 | B190 | 100 | 750 | 35 | 80 | 0 | 180 | 2 slab reefs | Reefing line
tied around
boom;
see fig. | E-1650 | E-470 | | C211 C192
C227 C208
C245 C225 | B230 | 80 | 750 | 45 | 80 | 204) | 195 | 2 slab reefs | 5.10.a. | E-1900 | E-650 | - 1) The "S" measurement includes the shackle supplied by Seldén Mast. - 2) Running Reef Hooks as shown on page 36 should be used for traditional 3rd and 4th slab reefs in conjunction with Single Line Reefs. If permanent reef hooks are used at the tack there is a risk that the sail can snag when a Single Line Reef is shaken out. - 3) "Max height" information refer to forward reef cringle only. Length is calculated on 16-plait reef line. For low stretch lines, reef height may be increased slightly. - 4) Tack shackle below top of extrusion. Comprehensive instructions on Single Line reefs can be obtained from Seldén Mast; reference No 595-664-SET, (in Swedish, English and German). ## **5.10 Clews, Conventional masts** C Outhaul cars or slides are supplied complete with shackles on all current Seldén booms. However, there are older booms from section series P 73/53–137/100 which were supplied without either. In these cases, the sail's clew is lashed to the boom end-fitting. | Во | oom | | Shackle
L | М | N
min. | |----------------------|---------|---------------------|--|----------|-----------| | 111/81
137/100 | 507-701 | (O) (O) | Ø 7 mm key shackle
L = 40 mm
307-004 | 40 mm | 11 mm | | 85/58
86/59 | 511-519 | | Ø 5 mm key shackle
L = 34 mm
307-001 | 40 mm | 11 mm
 | 111/75
128/90 | 507-602 | | Ø 8 mm key shackle
L = 44 mm
307-005 | 45 mm | 13 mm | | 150/105
162/125 | 307-002 | | Ø 10 mm shackle
L = 44 mm
307-024 | 45 mm | 13 mm | | 189/132
206/139 | 507-603 | | Ø 10 mm shackle
L = 38 mm
307-024 | 45 mm | 13 mm | | B087
B104 | 507-612 | | Ø 5 mm shackle
L = 38 mm
307-045 | 35 mm | 5 mm | | B120 | 507.540 | | Ø 8 mm shackle
L = 35 mm
307-026 | 40 mm | 8 mm | | B135 | 507-519 | 6 6 | Ø 8 mm shackle
L = 35 mm
307-026 | 40 mm | 8 mm | | 143/76 | 507.500 | | Ø 8 mm shackle
L = 35 mm
307-026 | 40 mm | 10 mm | | B152 | 507-569 | $\overline{\Omega}$ | Ø 8 mm shackle
L = 35 mm
307-026 | 40 mm | 10 mm | | B153 | 511-503 | | | | | | B171 | 507-569 | | Ø 10 mm shackle
L = 38 mm
307-024 | 45 mm | 10 mm | | B172 | 511-503 | | Ø 10 mm shackle
L = 38 mm
307-024 | 45 mm | 10 mm | | B190 | 507-569 | | Ø 10 mm shackle
L = 38 mm
307-024 | 45 mm | 10 mm | | B199 | 507-503 | | | | | | B200
B230
B250 | 511-570 | S | Ø 10 mm shackle
L = 38 mm
307-024 | 50 mm | 14 mm | | B200
B250 | 511-617 | 0.0.00 | pin Ø 12 x 33
165-402
jaw width: 20 mm | See fig. | 5 11 h | | B300 | 511-588 | | pin Ø 12 x 37
165-409
jaw width: 23 mm | See lig. | . 0.11.0 | | B290 | 511-648 | | Ø 12 mm shackle
L = 41 mm
307-004 | 55 mm | 12 mm | ## D&E ## 5.11 Running reef-hooks "Running" reef-hooks may be used as an alternative to fixed hooks. | Boom
section | Reef
hooks | | |-----------------|---------------|--------------------| | | F
mm | | | B120 | 120 | | | B135 | 120 | | | B143 | 120 | | | B152 | 120 | | | B153 | 120 | See page 25-34 for | | B171 | 120 | other tack data. | | B172 | 120 | | | B199 | 130 | | 130 130 130 130 Use "Alternative to cringles second alternative" (Fig. 5.12.c) ### **Alternatives to cringles** B200 B232 B250 B290 B300 First alternative Is used when the reefing line is attached with a shackle, such as for "Single Line Reefing". Second alternative Improves handling when the sail is to be reefed to a permanent tack reef-hook. ## **5.12 Boom sliders - eye** | Boom section | T-track
width | Part no. | Sliders | |--|------------------|------------|---| | 86/59
B087
B104 | 16 mm | 511-555-02 | Composite slider | | B087
B104 | 20 mm | 511-641-01 | Stainless steel slider | | B120
B135
B152
B153
B171
B172 | 25 mm | 511-571-01 | Stainless steel slider | | B199
B200
B232
B250
B256
B290
B300 | 32 mm | 511-572-01 | | | B120
B135
B152
B153
B171
B172
B190 | 25 mm | 511-636-01 | Divisible sliders for retro fit directly into the track. (Composite) | | B199
B200
B232
B250
B290
B300 | 32 mm | 511-637-01 | For lazy-jack or reefline location only (not for reefline attachment) | ## 6 Furling mast ## 6.1 R section: manual, hydraulic and electric (1989 - 2002) | | Mast section | | | | | | | | | | |----------------------------------|-------------------------|-----------|----------------------------|----------------|---|---|------------------------|---------------|-------------|-------------------------------| | Sail sl
Sail compa | † | 5 | | - | uff groove | • | Luff groove Luff tape | | | | | Mast sec-
tion | Sail
com-
part- | Sail slot | Max
foot length
E 3) | Sp | oare luff gro
in mast | ove | Туре | Dia-
meter | Luff groove | Max
space for
luff tape | | | ment | | . 0 | Luff
groove | Max
space
available
for luff
tape | Slide | | | | iuii tape | | mm | mm | mm | mm | mm | mm | | | mm | mm | mm | | 190/94
213/104
235/116 | Ø 85
Ø 90
Ø 100 | 13.5 ± 3 | 3750
4000
4500 | 3.25 | Ø 7.2 | _ | RA | Ø 25 | 2.75 ± 0.25 | Ø 6.0 | | 214/122
232/126
260/136 | Ø 110
Ø 114
Ø 114 | 15 ± 3 | 4750
5500
5500 | 3.25 | Ø 10.0 | Bainbridge
AO32 | RB | Ø 30 | 3.25 ± 0.35 | Ø 8.0 ¹⁾ | | 290/150
324/169 ³⁾ | Ø 124
Ø 154 | 15 ± 3 | 6000
7000 | 3.25
4.0 | Ø 10.0
Ø 12.0 | Bainbridge
AO32
Bainbridge AO32
or Rutgerson 101 | RC | Ø 38 | 3.25 ± 0.25 | Ø 10 ²⁾ | | 370/1923) | Ø 174 | 15 ± 3 | 7500 | 3.3 | Ø 13.0 | Bainbridge AO33
or Rutgerson 102 | RD | Ø 58 | 3.25 ± 0.25 | Ø 10 | - 1) 1995 and earlier: Ø 10 - 2) Max Ø7 mm luff tape due to new sail feeder (2001). - When the sail is fully furled, 300 mm of Emax will remain outside the mast due to reinforcement and clew-board. Note! Listed values are MAX VALUES for DACRON® main sails designed primarily for easy furling and reefing. For more performance oriented sails with more shape and stiffer sail cloth, max foot length will be reduced depending on sail design and sail cloth. - ☐ Design aspects on furling main sails, see page 44. #### **Alternative clew executions** Clew with clew-board: Foot ("E") measured to after point of sail. Clew-board gives longer effective ("E") than integrated block or normal cringle. Fig. 6.1.a R ## 6.2 F section: manual, hydraulic and electric (2003 - →) | Sections | 3 | Section dimn.
X/Y mm | l _y
cm⁴ | l _X
cm⁴ | Wall
thickness,
mm | Weight
kg/m | W _y min
cm³ | W _X min
cm³ | |---------------|------|-------------------------|-----------------------|-----------------------|--------------------------|----------------|---------------------------|---------------------------| | Furling masts | F176 | 176/93 | 526 | 187 | 2.90 | 4.12 | 58.2 | 40.0 | | | F194 | 194/101 | 709 | 254 | 3.05 | 4.69 | 70.8 | 49.8 | | | F212 | 212/109 | 970 | 337 | 3.15 | 5.45 | 88.2 | 61.8 | | 05 | F228 | 228/118 | 1306 | 453 | 3.4 | 6.30 | 112 | 76.8 | | 1 1 | F246 | 246/126 | 1781 | 613 | 3.75 | 7.37 | 139 | 97.3 | | Y | F265 | 265/135 | 2392 | 828 | 4.15 | 8.66 | 173 | 122 | | \ / | F286 | 286/146 | 3237 | 1122 | 4.5 | 10.02 | 220 | 154 | | \bigcup_{i} | F305 | 305/156 | 4389 | 1513 | 5.05 | 11.75 | 276 | 194 | | × | F324 | 324/169 | 5576 | 2056 | 5.5 | 13.8 | 329 | 243 | | | F370 | 370/192 | 8835 | 3149 | 5.8 | 16.6 | 468 | 326 | | | F406 | 408/207 | 14321 | 4725 | 6.5 | 19.34 | 671 | 451 | | | F | 406 | 408/20 |)7 | 14321 | 4725 | 6.5 | 19.34 | | 671 | 451 | |-------------------------------|------------------|----------|---------------|--------------|-------------|---|-----------------|--------------------------|---------------|----------------|--------------------| | | | | | Mast sec | ction | | | | Lu | ff extrusion | า | | Sail slo
Sail
compartme | 7 | | |) | Lu | | | Luff groove
Luff tape | | | | | Section | Sail
compart- | | Max
length | Sail
slot | S | pare luff groo | ove | Туре | Dia-
meter | Luff
groove | Max space for luff | | | ment | l | E 1) | | Luff groove | Max space
available
for luff tape | Slide | | | | tape | | | mm | Туре | mm | mm | mm | mm | | | mm | mm | mm | | F176 | Ø 85 | RA | 3750 | | | 6 | _ | | | | | | F194 | Ø 93 | RA | 4200 | | | | | | | | | | F212 | Ø 100 | RA | 4500 | | | | | RA | Ø 25 | 2.75±0.25 | Ø6 | | | | RB | 4400 | 15±3 | | | | | | | | | F228 | Ø 108 | RA | 5000 | | | 8 | Bainbridge AO31 | | | | | | | | RB | 4900 | | | | | | | | | | F246 | Ø 114 | RB | 5400 | | 3.25±0.25 | | | RB | Ø 30 | | Ø8 | | F265 | Ø 123 | RB | 6000 | | | | | | | | | | | | RC | 5800 | | | | | | | | | | F286 | Ø 133 | RB | 6500 | 47.0 | | 10 | | | | | | | | | RC
RB | 6300
6900 | 17±3 | | 10 | Bainbridge AO32 | RC | Ø 38 | | Ø 72) | | F305 | Ø 141 | RC | 6700 | | | | | | | 3.25±0.35 | | | 1 303 | 2 141 | RD | 6000 | | | | | | | | | | | | RC | 0000 | | | | | | | | | | F324 | Ø 154 | RD | 7000 | 20±3 | | 12 | | | | | | | | | RC | | | 4±0.25 | | Bainbridge AO32 | RD | Ø 58 | | Ø 10 | | F370 | Ø 174 | RD | 7500 | 22±3 | | 13 | | | | | | | F406 | Ø 190 | RD | 9500 | 24±3 | 6.5±0.5 | 15 | Bainbridge AO33 | | | | | ¹⁾ When the sail is fully furled, min 300 mm of Emax will remain outside the mast due to reinforcement and clew-board. Note! Listed values are MAX VALUES for DACRON® main sails designed primarily for easy furling and reefing. For more performance oriented sails with more shape and stiffer sail cloth, max foot length will be reduced depending on sail design and sail cloth. ☐ Design aspects on furling main sails, see page 46. #### Alternative clew executions Clew with clew-board: Foot ("E") measured to after point of sail. Clew-board gives longer effective ("E") than integrated block or normal cringle. Fig. 6.2.a #### 6.3 F section: 2017→ | Sections | | Section
dimn.
X/Y mm | ly
cm4 | lx
cm4 | Wall
thickness
sides | Weight
kg/m
-0 +20% | Wy
cm3 | Wx
cm3 | Туре | |----------|------|----------------------------|-----------|-----------|----------------------------|---------------------------|-----------|-----------|---------| | | F170 | 170/95 | 441 | 187 | 2,90 | 3,84 | 50,9 | 39 | RA | | | F185 | 185/104 | 591 | 252 | 3,05 | 4,36 | 62,3 | 48,5 | RA | | / \ | F199 | 199/113 | 797 | 337 | 3,25 | 5,02 | 78,2 | 60 | RA (RB) | | | F217 | 217/123 | 1070 | 455 | 3,40 | 5,71 | 96,9 | 74,3 | RB | | r 7 | F234 | 234/131 | 1466 | 615 | 3,88 | 6,74 | 122 | 94 | RB | | | F252 | 252/142 | 1946 | 828 | 4,30 | 7,76 | 153 | 117 | RB, RC | | ا کے ما | F272 | 272/153 | 2656 | 1122 | 4,77 | 9,06 | 192 | 147 | RC | | | F291 | 291/163 | 3598 | 1515 | 5,34 | 10,67 | 243 | 187 | RC | | | Mast section | | | | | | | | | | | |---------|---------------------|------------------|------|--------------|--|--|--|--|--|--|--| | | | | | | | | | | | | | | Section | Sail
compartment | Max
leng
E | gth | Sail
slot | | | | | | | | | | mm | Type | mm | mm | | | | | | | | | F170 | ø85 | RA | 3750 | | | | | | | | | | F185 | ø93 | RA | 4200 | | | | | | | | | | F199 | ø100 | RA | 4500 | | | | | | | | | | F199 | | RB | 4400 | 15+-2.5 | | | | |
 | | | F217 | ø108 | RA | 5000 | | | | | | | | | | | 2.00 | RB | 4900 | | | | | | | | | | F234 | ø114 | RB | 5400 | | | | | | | | | | E050 | -100 | RB | 6000 | | | | | | | | | | F252 | ø123 | RC | 5800 | | | | | | | | | | F272 | ø133 | RB | 6500 | 17 +-3 | | | | | | | | | 12/2 | 2100 | RC | 6300 | | | | | | | | | | F291 | ø143 | RC | 6700 | | | | | | | | | | . 201 | 20 | RD | 6000 | | | | | | | | | | | | ΚD | 6000 | | | | | | | | | | | Luff groove Luff tape | | | | | | | | | | | | |------|-----------------------|-------------|----------------------------|--|--|--|--|--|--|--|--|--| | Туре | Dia-
meter | Luff groove | Max space for
luff tape | | | | | | | | | | | mm | mm | mm | mm | | | | | | | | | | | RA | Ø 25 | 2.75±0.25 | Ø6 | | | | | | | | | | | RB | Ø 30 | | Ø 8 | | | | | | | | | | | RC | Ø 38 | 3.25±0.35 | Ø 7 ²⁾ | | | | | | | | | | | RD | Ø 58 | | Ø 10 | | | | | | | | | | **Luff extrusion** - 1) When the sail is fully furled, min 300 mm of Emax will remain outside the mast due to reinforcement and clew-board. Note! Listed values are MAX VALUES for DACRON® main sails designed primarily for easy furling and reefing. For more performance oriented sails with more shape and stiffer sail cloth, max foot length will be reduced depending on sail design and sail cloth. - ☐ Design aspects on furling main sails, see page 48. #### Alternative clew executions Clew with clew-board: Foot ("E") measured to after point of sail. Clew-board gives longer effective ("E") than integrated block or normal cringle. Fig. 6.2.a #### 6.4 Furlex Main - Retro-fit system (Production of this product range discontinued 2003). | | | F | urlex Main – Other so | ection | | | | Luff | extrusion | | |--------------------|---------------|--------------|--|-----------------------------------|---|-------------------------------------|-----------|---------------|-------------|------------------| | Sail slo | 1 | 5 | | Luff tape
chamber
Luff groo | Luff groove | | Luff tape | | | | | Furlex
Main | Sail
cham- | Sail
slot | Max. foot length recommended ¹⁾ | Spare luff groove in mast | | | Туре | Dia-
meter | Luff groove | Max
space | | Туре | ber | | "E | Luff
groove | Max
space
available
for luff
tape | Slide | | | | for luff
tape | | mm | Type 76
Type 90 | Ø 76
Ø 90 | 13.5 ± 3 | 3500
4000 | 3.25
3.25 | Ø 9.4
Ø 9.4 | Bainbridge AO31
or Rutgerson 101 | RA | Ø 25 | 2.75 ± 0.25 | Ø 6.0 | | Type 108 | Ø 108 | 15 ± 3 | 5000 | 3.25 | Ø 10.0 | Bainbridge AO32
or Rutgerson 101 | RB | Ø 30 | 3.25 ± 0.35 | Ø 8* | $^{^{(1)}}$ Note! Listed values are MAX VALUES for DACRON[®] main sails designed primarily for easy furling and reefing. For more performance oriented sails with more shape and stiffer sail cloth, max foot length will be reduced depending on sail design and sail cloth. *1995 and earlier: Ø 10 - ☐ The luff extrusion is asymmetrically shaped in order to help overcome initial resistance when starting to furl. Do not use heavy sail-cloth in the luff area. - ☐ Head and tack webbing bands should be of soft quality which can fold easily. 20 mm is a suitable width. Do not use metal cringles on them. - ☐ Battens must be located on the port side of the sail so as not to snag on the inside of the sail compartment. - ☐ If clew cringles are used they must not be thicker than 14 mm in order to fit the outhaul block. - □ The upper part of the luff extrusion will be kept centered by the halyard swivel, while most of the section will rest on the aft face of the sail compartment when sailing. The luff curve must have a wedge formed into it for compensation (0 to 30 mm) at the upper 500–800 mm of the luff. #### Alternative clew executions Clew with clew-board: Foot ("E") measured to after point of sail. Clew-board gives longer effective ("E") than integrated block or normal cringle. Fig. 6.3.a #### 6.5 Design aspects on furling mast main sails #### Sail cloth type In general, single layer cloth (e.g. Dacron TM) folds easier around the luff extrusion than multilayer laminate cloth, causing less furling resistance. "Softer" sail cloth therefore allows more sail to be furled into the mast. Sail cloth generally becomes softer with time, so a new sail can cause more furling resistance than a sail that has been used for some time. #### Sail cloth disposition The luff extrusion is asymmetrically shaped in order to help overcome initial resistance when starting to furl. Do not use heavy sail cloth in the luff area. #### Clew height A furling main sail foot should should rise towards the clew, approximately 85°–88° (see e.g. fig. 6.2.c). This increases leech tension when furling and prevents the lower part of the sail roll becoming too bulky. Note that when the sail is furled, the weight of the sail may cause the clew to move downwards. #### Luff curve shape The upper part of the luff extrusion will be kept centered by the top swivel, while most of the luff extrusion will rest on the aft face of the sail compartment when sailing. The luff curve must have a wedge formed into it for compensation (0- to 30 mm) at the upper 500 – 800 mm of the luff. #### **Clew reinforcement** The clew reinforcement should be made so that it allows the sail to be furled in leaving approximately 300 - 500 mm outside the mast. #### Webbing tape Head and tack webbing tapes should be of soft quality which can fold easily. Do not use cringles. #### Luff tape Avoid using luff tape close to head and tack. The high loads in head and tack may damage the luff tape. (See e.g. fig. 6.2.c) #### Clew cringles If clew cringles are used they must not be thicker than 14 mm in order to fit the outhaul block. #### **Batten types** The main batten types used in furling main sails are: full-length vertical battens, short vertical battens and horizontal (foldable) battens. Experience has shown that vertical battens work very well whereas horizontal battens have a tendency to snag in the sail slot when the sail is furled out. If full-length vertical battens are used, round battens generally work better than square battens since square battens can twist. If short vertical battens are used, square battens often work well and are usually less bulky. #### **Batten location** Battens must be located on the port side of the sail so as not to snag on the inside of the sail compartment. ## **End fittings, connectors and tensioning arrangement** End fittings, connectors and tensioning arrangement (vertical battens) should be made as slim as possible. Bulky solutions may cause the battens to snag in the sail slot. #### Short vertical battens – vertical displacement Short vertical battens should be located so that they do not overlap each other vertically. The lowest batten should not overlap the clew reinforcement. # 7 Furlex - Seldén jib furling and reefing system ## 7.1 Furlex, 20S-40S As Furlex 20S, 30S and 40S has no luff extrusion these models are not suitable for reefing. Fig. 7.1.b | Measurement | Code | Furlex
20S | Furlex
30S | Furlex
40S | |--------------------------|------|---------------|---------------|---------------| | Top Swivel Height | TS | 35 | 52 | 52 | | Top Swivel Diameter | TSD | Ø 26 | Ø 39 | Ø 39 | | Top Swivel Pin | TSP | Ø 6 | Ø 8 | Ø 8 | | Top Swivel Fork | TSF | 10 | 14 | 14 | | Upper Hole Dia | HD | Ø 5,5 | Ø 8,5 | Ø 8,5 | | Halyard Swivel Height | HSH | - | 90 | 90 | | Halyard Swivel Deduction | HSD | - | 180 | 180 | | Tack Fitting height | TF | - | 55 | 55 | | Tack Fitting Fork Width | FW | - | 8 | 8 | | Tack Fitting Pin | TFP | - | Ø 8 | Ø 8 | | Tack Fitting Hole | TFH | - | Ø 8,5 | Ø 8,5 | | Cut Back | СВ | - | 20 | 20 | | Tack Deduction | TD | - | 10 | 10 | | Lower Swivel Height | LS | 60 | 106 | 117 | | Drum Fork Width | DFW | 9 | 10 | 10 | | Drum Fork Pin | Р | 5,8 | 8 | 8 | #### 7.2 Furlex 50S-500S Sails with a luff considerably shorter (more than 500 mm) than the maximum permissible must be fitted with a permanent head pendant. The total luff length including pendant should be just less than the "Max. sail space" dimension. A too short luff length (including head pendant) can result in "halyard wrap" which may cause severe damage to the forestay, and put the entire rig at risk. For more information please refer to "Sail information" in the relevant Furlex manual. Furlex 400S Mk2 halyard swivel. If "F" measurement is >specified (sail is made too short) there is a risk of the halyard shackle shafing the luff extrusion. Always check clearance. Add a pendant between sail and halyard swivel or a soft shackle between HMPE loop in the halyard swivel and the halyard shackle. A too short luff length (including head pendant) can also result in "halyard wrap" which may cause severe damage to the forestay, and put the entire rig at risk. For more information please refer to "Sail information" in the relevant Furlex manual. Fig. 7.3.c ## Furlex 50S | | ** *** * * * * * * * * * * * * * * * * * | | | |-------------|--|---------|----------------| | | Fig. 7.2.c | F | ig. 7.2.d | | | | | | | Luff groove | Luff groot | ve Lut | f tane | | > | Luff tape chamber | cha cha | f tape
mber | | | | | | | Furlex
Type/Serie | | Section
dimension | Luff
groove | Max.
space
available
in
chamber | Max. luff
tape | Cut-
back | Cut-
back
height | Maximum sail space FL-(F+E) (Measurement calculated from existing forestay length: FL). | | | |----------------------|----------------|----------------------|----------------|---|-------------------|--------------|------------------------|---|---------|-----------| | | | | mm | mm | mm | CB
mm | G
mm | F
mm | E
mm | F+E
mm | | | А | 26/17 | 3.0 | Ø 6 | Ø 5 | 60 | 1100 | 360 | 280 | 640 | | | В | 31/20 |
3.0 | Ø 6 | Ø 5 | 60 | 1100 | 390 | 340 | 730 | | | С | 40/27 | 3.0 | Ø7 | Ø 6 | 80 | 1100 | 540 | 420 | 960 | | | D | 50/34 | 3.0 | Ø 8 | Ø 6 | 100 | 1100 | 620 | 490 | 1110 | | | 50S | 22/15 | 2.6 | Ø 6 | Ø 5 | 25 | 630 | 360 | 215 | 575 | | Manual | 100S Ø 4 & 5 | 26/17 | 3.0 | Ø 6 | Ø 5 | 60 | 1100 | 410 | 280 | 690 | | Mar | 100S Ø 6 | 26/17 | 3.0 | Ø 6 | Ø 5 | 60 | 1100 | 425 | 295 | 720 | | | 200S | 31/21 | 3.0 | Ø 6 | Ø 5 | 60 | 1100 | 540 | 330 | 870 | | | 300S Ø 8 | 39/27 | 3.0 | Ø 7.5 | Ø 6.5 | 80 | 1100 | 550 | 400 | 950 | | | 300S Ø 10 | 39/27 | 3.0 | Ø 7.5 | Ø 6.5 | 80 | 1100 | 650 | 400 | 1050 | | | 400S | 48/34 | 3.0 | Ø 8 | Ø 6.5 | 95 | 1100 | 620 | 535 | 1155 | | | 500S | 60/46 | 3.0 | Ø 9 | Ø 7 | 95 | 1100 | 670 | 535 | 1205 | | Thi | s data is also | valid for Furl | ex Electr | ic. | | | | | | | ## 7.3 Furlex 104S-404S (2014-) & Furlex Electric (2018-) Sails with a luff considerably shorter (more than 500 mm) than the maximum permissible must be fitted with a permanent head pendant. The total luff length including pendant should be just less than the "Max. sail space" dimension. A too short luff length (including head pendant) can result in "halyard wrap" which may cause severe damage to the forestay, and put the entire rig at risk. For more information please refer to "Sail information" in the relevant Furlex manual. Furlex 104S/204S Mk2/304S Mk2/404S halyard swivel. If "F" measurement is > specified (sail is made too short) there is a risk of the halyard shackle shafing the luff extrusion. Always check clearance. Add a pendant between sail and halyard swivel or a soft shackle between HMPE loop in the halyard swivel and the halyard shackle. A too short luff length (including head pendant) can also result in "halyard wrap" which may cause severe damage to the forestay, and put the entire rig at risk. For more information please refer to "Sail information" in the relevant Furlex manual. Fig. 7.3.c | Furlex
Type/Serie | | Section
dimension | Luff
groove | Max.
space
available
in
chamber | Max. luff
tape | Cut-
back | Cut-
back
height | Maximum sail space FL-(F+E
(Measurement calculated from
existing forestay length: FL). | | ulated from | |----------------------|--------------|----------------------|----------------|---|-------------------|--------------|------------------------|--|---------|-------------| | | | | mm | mm | mm | CB
mm | G
mm | F
mm | E
mm | F+E
mm | | | 104S Ø 4 & 5 | 30/20 | 2.75 | Ø 6 | Ø 5 | 60 | 1100 | 440 | 205 | 645 | | | 104S Ø 6 | 30/20 | 2.75 | Ø 6 | Ø 5 | 60 | 1100 | 440 | 220 | 660 | | | 204S Ø 6 | 35/25 | 3.0 | Ø 6 | Ø 5 | 60 | 1100 | 425 | 265 | 690 | | <u>=</u> | 204S Ø 7 | 35/25 | 3.0 | Ø 6 | Ø 5 | 60 | 1100 | 425 | 265 | 690 | | Manual | 204S Ø 8 | 35/25 | 3.0 | Ø 6 | Ø 5 | 60 | 1100 | 425 | 275 | 700 | | Ž | 304S Ø 8 | 42/31 | 3.0 | Ø 7 | Ø 6.5 | 60 | 1100 | 430 | 310 | 740 | | | 304S Ø 10 | 42/31 | 3.0 | Ø 7 | Ø 6.5 | 60 | 1100 | 530 | 315 | 845 | | | 404S Ø 12 | 52/38 | 3.0 | Ø 8 | Ø 6.5 | 80 | 1100 | 630 | 390 | 1020 | | | 404S Ø 14 | 52/38 | 3.0 | Ø8 | Ø 6.5 | 80 | 1100 | 630 | 410 | 1040 | #### Head deduction (F) Furlex 204S-304S Mk2 Halyard swivel (2018-) | Furlex type | F | F+E | |-------------|-----|-----| | 204S Ø 6 | 485 | 750 | | 204S Ø 7 | 485 | 750 | | 204S Ø 8 | 485 | 760 | | 304S Ø 8 | 490 | 800 | | 304S Ø 10 | 490 | 905 | Fig 7.3.c ## 7.4 Furlex 200TD-400TD (Through Deck) Sails with a luff considerably shorter (more than 500 mm) than the maximum permissible must be fitted with a permanent head pendant. The total luff length including pendant should be just less than the "Max. sail space" dimension. A too short luff length (including head pendant) can result in "halyard wrap" which may cause severe damage to the forestay, and put the entire rig at risk. For more information please refer to "Sail information" in the relevant Furlex manual. Furlex 400TD Mk2 halyard swivel. If "F" measurement is > specified (sail is made too short) there is a risk of the halyard shackle shafing the luff extrusion. Always check clearance. Add a pendant between sail and halyard swivel or a soft shackle between HMPE loop in the halyard swivel and the halyard shackle. A too short luff length (including head pendant) can also result in "halyard wrap" which may cause severe damage to the forestay, and put the entire rig at risk. For more information please refer to "Sail information" in the relevant Furlex manual. Fig. 7.4.c Fig. 7.4.d | | Furlex
Type/Serie | Section
dimension | Luff
groove | Luff tape
chamber | Max. luff
tape | Cut-back | Maximum sail space FLD-(F+E) | | ce FLD-(F+E) | |--------|----------------------|----------------------|----------------|----------------------|-------------------|----------|------------------------------|---------|--------------| | | | | mm | mm | mm | CB
mm | F
mm | E
mm | F+E
mm | | | 200TD | 31/21 | 3.0 | Ø6 | Ø 5 | 60 | 540 | 130 | 670 | | Manual | 300TD Ø 8 | 39/27 | 3.0 | Ø 7.5 | Ø 6.5 | 80 | 550 | 150 | 700 | | Mar | 300TD Ø 10 | 39/27 | 3.0 | Ø 7.5 | Ø 6.5 | 80 | 650 | 150 | 800 | | | 400TD | 48.5/34 | 3.0 | Ø8 | Ø 6.5 | 95 | 620 | 210 | 830 | | This | data is also v | alid for Furle | x TD Elec | tric. | | | | | | ## 7.5 Furlex 204/304/404TD (Through Deck) If "F" measurement is > specified (sail is made too short) there is a risk of the halyard shackle shafing the luff extrusion. Always check clearance. Add a pendant between sail and halyard swivel or a soft shackle between HMPE loop in the halyard swivel and the halyard shackle. A too short luff length (including head pendant) can also result in "halyard wrap" which may cause severe damage to the forestay, and put the entire rig at risk. For more information please refer to "Sail information" in the relevant Furlex manual. | - | Furlex
Type/Serie | Section
dimension | Luff
groove | Luff tape
chamber | Max. luff
tape | Cut-back | Maximum sail space FLD-(F+E) | | ce FLD-(F+E) | |--------|----------------------|----------------------|----------------|----------------------|-------------------|----------|------------------------------|---------|--------------| | | | | mm | mm | mm | CB
mm | F
mm | E
mm | F+E
mm | | | 204TD | 35x25 | 3.0 | Ø6 | Ø 5.5 | 60 | 485 | 75 | 560 | | Manual | 304TD Ø 8 | 42x31 | 3.0 | Ø 7 | Ø 6.5 | 60 | 490 | 85 | 575 | | Mar | 304TD Ø 10 | 42x31 | 3.0 | Ø 7 | Ø 6.5 | 60 | 590 | 85 | 675 | | | 404TD | 52x38 | 3.0 | Ø8 | Ø 7,5 | 80 | 630 | 115 | 745 | | This | data is also v | alid for Furle | x TD Elec | tric. | | | | | | ## 7.6 Furlex Hydraulic 300H-500H | 1 | Furlex Secti
dimen
Type/Serie | | Luff
groove | Max. space
available in
chamber | Max. luff
tape | Cut-back | (Me | num sail spa
asurement cal
sting forestay | | |-----------|-------------------------------------|-------|----------------|---------------------------------------|-------------------|----------|---------|---|-----------| | | | | mm | mm | mm | CB
mm | F
mm | E
mm | F+E
mm | | | C-Hydraulic | 40/27 | 3.0 | Ø7 | Ø 6 | 80 | 540 | 520 | 1060 | | | D-Hydraulic | 50/34 | 3.0 | Ø8 | Ø 6 | 100 | 620 | 675 | 1295 | | <u>:</u> | E-Hydraulic | 60/46 | 3.0 | Ø 9 | Ø 7 | 100 | 620 | 675 | 1295 | | Hydraulic | 300H Ø 8 | 39/27 | 3.0 | Ø 7.5 | Ø 6.5 | 80 | 550 | 490 | 1040 | | Ť | 300H Ø 10 | 39/27 | 3.0 | Ø 7.5 | Ø 6.5 | 80 | 650 | 490 | 1140 | | | 400H | 48/34 | 3.0 | Ø8 | Ø 6.5 | 100 | 620 | 610 | 1230 | | | 500H | 60/46 | 3.0 | Ø 9 | Ø 7 | 100 | 670 | 675 | 1345 | ## 8 Furling system CX & GX ## 8.1 Seldén CX, Furling system for Code 0 and stay sail CXe25/45 TD | System | (Measure
halyard sha | ement calcula
ackle to faste
boat/bow sp | ated from
ning device | | | | Max fork | |----------|-------------------------|--|--------------------------|----|----|-------|------------------| | | E | F | F+E | D1 | D2 | Ø Pin | space
Ø D5 mm | | | mm | mm | mm | mm | mm | mm | וווווו כם ש | | CX10 | 115 | 90 | 205 | 14 | 12 | 10 | 40 | | CX15 | 125 | 95 | 220 | 16 | 12 | 10 | 40 | | CX25 | 155 | 120 | 275 | 22 | 20 | 12 | 45 | | CX40 | 190 | 145 | 335 | 24 | 24 | 16 | 55 | | CX45 | 190 | 145 | 335 | 24 | 24 | 16 | 66 | | CXe25 OD | 285 | 120 | 405 | 22 | 20 | 12 | 64 | | CXe25 TD | 70 | 120 | 190 | - | 20 | 12 | 64 | | CXe45 OD | 300 | 145 | 445 | 24 | 24 | 16 | 68 | | CXe45 TD | 70 | 145 | 215 | - | 24 | 16 | 68 | #### Thimbles for AT-cables & AT-lines | System | Part no. | Ø Hole
mm | D3
Max Ø
AT-cable
mm | W1
mm | H1
mm | H3
mm ¹) | |---------------|----------|--------------|-------------------------------|----------|----------|-------------| | CX10/15 | 545-114 | 10.3 | 9 | 16 | 45 | 18 | | CX10/15 | 545-116 | 10.3 | 11 | 16 | 45 | 18 | | CX/CXe25 | 545-214 | 12.3 | 11 | 19 | 55 | 22 | | CX/CXe25 | 545-216 | 12.3 | 13 | 19 | 56 | 21 | | CX40&CX/CXe45 | 545-416 | 16.3 | 16 | 20 | 59 | 27 | ¹⁾ For max Ø AT-cable #### Thimbles for double luff rope | System | Part no. | Ø Hole
mm | D4
mm | W2
mm | W3
mm | H2
mm | |---------------|----------|--------------|----------|----------|----------|----------| | CX10/15 | 545-115 | 10.3 | 8 | 16 | 22 | 34 | | CX/CXe25 | 545-215 | 12.3 | 8 | 19 | 27 | 42 | | CX40&CX/CXe45 | 545-415 | 16.3 | 12 | 20 | 33 | 52 | ## 8.2 Seldén GX - Furling system for Gennakers/ Asymmetric spinnakers | System | Maximum sail space
(TL-SDL-SDH) ¹⁾ | | | | | | |--------|--|-----------|----------|----------|---------|---------| | | SDL
mm | SDU
mm | LS
mm | HS
mm | A
mm | B
mm | | GX7.5 | 100 | 70 | 100 | 70 | 120 | 120 | | GX10 | 105 | 70 | 110 | 70 | 120 | 120 | | GX15 | 115 | 80 | 120 | 75 | 120 | 120 | |
GX25 | 155 | 100 | 155 | 95 | 150 | 150 | To calculate the length of the AT-cable, see manual 597-077-E. #### Dimension for GX tack adapter in combination with CX lower swivel | System | Adapter
Part no. | AS
adapter
deduction | E
CX lower swivel
deduction | SDA
sail deduction
adapter | |------------------------|---------------------|----------------------------|-----------------------------------|----------------------------------| | GX7.5 adapter - CX10 | 545-028-01 | 30 | 115 | 35 | | GX10 adapter - CX15 | 545-128-01 | 30 | 125 | 35 | | GX15 adapter - CX25 | 545-228-01 | 40 | 155 | 40 | | GX25 adapter - CX45 1) | 545-428-01 | 45 | 190 | 50 | ¹⁾ Same values for CX40 as for CX45. ¹⁾ System Maximum sail space includes space for lashing rope. | Notes | |-------| ## **DINGHIESKEELBOATSYACHTS** **Seldén Mast AB, Sweden** Tel +46 (0)31 69 69 00 Fax +46 (0)31 29 71 37 e-mail info@seldenmast.com **Seldén Mast Limited, UK**Tel +44 (0) 1329 504000 Fax +44 (0) 1329 504049 e-mail info@seldenmast.co.uk Seldén Mast Inc., USA Tel +1 843-760-6278 Fax +1 843-760-1220 e-mail info@seldenus.com **Seldén Mast A/S, DK** Tel +45 39 18 44 00 Fax +45 39 27 17 00 e-mail info@seldenmast.dk Seldén Mid Europe B.V., NL Tel +31 (0) 111-698 120 Fax +31 (0) 111-698 130 e-mail info@seldenmast.nl Seldén Mast SAS, FR Tel +33 (0) 251 362 110 Fax +33 (0) 251 362 185 e-mail info@seldenmast.fr Seldén Mast Asia Ltd, Hong Kong Tel +852 3572 0613 Fax +852 3572 0623 e-mail info@seldenmast.com.hk www.seldenmast.com Dealer: The Seldén Group is the world's leading manufacturer of mast and rigging systems in carbon and aluminium for dinghies, keelboats and yachts. Our well known brands are Seldén and Furlex. The worldwide success of Furlex has enabled us to build a network of over 750 authorised dealers covering the world's marine markets. So wherever you sail, you can be sure of fast access to our service, spare parts and know-how. SELDÉN and FURLEX are registered trademarks of Seldén Mast AB